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My research interests are optimization, especially polynomial and convex opti-
mization, tensor computation, and their applications in machine learning and data
science. The following is a summary of projects that are done during Ph.D. study.

The project Detecting Copositivity of Tensors[5] uses techniques in polynomial
optimization to detect copositivity of symmetric tensors. In the project The Saddle
Point Problem of Polynomials[3], we develop a first practical numerical algorithm
to solve the general non convex-concave saddle point problem of polynomials. Her-
mitian Tensor Decompositions[4] studies properties of Hermitian tensors and their
decompositions which have important applications in quantum physics. Learning
Diagonal Gaussian Mixture Models and Incomplete Tensor Decomposition[2] applies
tensor decomposition techniques to recover unknown parameters of the Gaussian
mixture model from observed samples. Separability of Hermitian Tensors and PSD
Decompositions [1] reformulates the problem as a truncated moment problem which
can be solved by semidefinite relaxations. Moreover, techniques from tensor decom-
positions are also used to certify separability for Hermitian tensors.

1. Detection of Copositive Tensors and Matrices

The first work focuses on detecting copositivity for matrices and tensors. Coposi-
tive matrices and tensors have broad applications, including complementarity prob-
lems, vacuum stability, etc. However, how to detect copositivity was an open ques-
tion in prior work. We proposed the first algorithm that can detect copositivity for
all matrices and tensors.

A symmetric tensor A of order m and dimension n is a multi-dimensional array
A := (Ai1...im) and Ai1i2...im = Aj1j2...jm whenever (i1, i2, . . . , im) is a permuta-
tion of (j1, j2, . . . , jm). Each symmetric tensor A is determined by the polynomial
A(x) :=

∑
1≤i1,i2,··· ,im≤nAi1i2···imxi1xi2 · · ·xim . A symmetric tensor A is called

copositive if A(x) ≥ 0 for all x ≥ 0. A is copositive if and only if v∗ ≥ 0 where v∗

is the minimum value of the following optimization problem.

(1.1)

{
v∗ := min A(x)

s.t. eTx =
∑n
i=1 xi = 1, (x1, . . . , xn) ≥ 0.

The problem (1.1) is a polynomial optimization problem. A standard approach
for solving it is to apply classical Lasserre relaxations. However classical Lasserre
relaxations may not have finite convergence and certifying its convergence is also
hard. To avoid these issues, we express Lagrange multipliers by polynomials and
additionally add an ball constraint to improve the efficiency to get the new problem

(1.2)

 v∗ := min A(x)
s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

1− ‖x‖2 ≥ 0, xi ≥ 0, pi(x) ≥ 0 (i = 1, . . . , n).
1
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where e is the all one vector and pi := ∂A(x)
∂xi
−mA(x) (i = 1, 2, . . . , n) are Lagrange

multipliers in polynomial form. The above problem (1.2) is in fact equivalent to
problem (1.1). Classical Lasserre relaxations are applied to solve problem (1.2). Let
vk be the minimum value of the kth order relaxation of problem (1.2). We proved
that v1 ≤ v2 ≤ · · · ≤ vk = v∗ for all k big enough. Thus if vk ≥ 0 for some k, then
A is copositive. But even if vk < 0 for some k, we cannot conclude v∗ < 0 since it
is possible that vk < v∗ and it can be very hard to verify if vk = v∗. Therefore, we
proposed the problem (1.3)

(1.3)

{
min ξT [x]m

s.t eTx− 1 = 0, x ≥ 0, vk −A(x) ≥ 0.

where ξ is randomly chosen vector. Suppose A is not copositive. For big enough
k, the minimizer of the kth order relaxation of problem (1.3) can give us a point
u ≥ 0 such that A(u) < 0 which refutes copositivity of A.

Theorem 1.1 ([5]). Let A be a symmetric tensor. Our algorithm has the properties:

(i) If A is copositive, then our algorithm must stop with vk ≥ 0, when k is
sufficiently large.

(ii) If A is not copositive, then our algorithm must return a point u ≥ 0 with
f(u) < 0, when k is sufficiently large.

This work gives a complete semidefinite algorithm for detecting tensor copositiv-
ity. Our algorithm converts the problem of detecting copositivity into a sequence
of semidefinite programming problems. It is proven that the algorithm must ter-
minate in finite steps, so the copositivity can be detected exactly in finitely many
iterations. This is the first algorithm that can detect copositivity in finitely many
iterations for all matrices and tensors. This work has been published on SIAM
Journal on Optimization.

2. The Saddle Point Problem

The second work is about the challenging saddle point problem. They are of fun-
damental importance in min-max optimization, game theory, etc. The saddle point
problem is a classically open question. We proposed the first efficient numerical
algorithm to solve the saddle point problem of polynomials.

Let F (x, y) be a polynomial in (x, y) and X,Y are two semialgebraic sets defined
by polynomials. (x∗, y∗) is said to be saddle point of F (x, y) over X × Y if

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) ∀x ∈ X, y ∈ Y

The above implies that

(2.1) min
x∈X

max
y∈Y

F (x, y) = F (x∗, y∗) = max
y∈Y

min
x∈X

F (x, y).

Therefore all saddle points share the same objective value.
Suppose (x∗, y∗) is a saddle point, then x∗ is a minimizer of F (x, y∗) over X and

y∗ is a maximizer of F (x∗, y) over Y . It involves two separate optimization problems
that must be solved simultaneously. KKT conditions and Lagrange multipliers
can be applied to connect these two problems. In our work, Lagrange multipliers
are expressed by polynomials in term of original variables. Let φ(x, y), ψ(x, y) be
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equality and inequality polynomials respectively in KKT conditions. Every saddle
point must satisfy those KKT conditions, so it leads to the following problem

(2.2)
minx∈X,y∈Y F (x, y)

s.t. φ(x, y) = 0, ψ(x, y) ≥ 0

Each saddle point must be feasible to the above problem. Thus solving the problem
can give us candidate saddle points. Let (x∗, y∗) be a minimizer of the above
problem. If x∗ is a minimizer of F (x, y∗) over X and y∗ is a maximizer of F (x∗, y)
over Y , then (x∗, y∗) is a saddle point; otherwise, such (x∗, y∗) is not a saddle point
i.e., there exists u ∈ X and/or there exists v ∈ Y such that F (u, y∗)− F (x∗, y∗) <
0 and/or F (x∗, v) − F (x∗, y∗) > 0. The points u, v can be used to add new
constraints F (u, y)−F (x, y) ≥ 0 and/or F (x, y)−F (x, v) ≥ 0 to problem (2.2).
All saddle points must satisfy the newly added constraints, so the new problem (2.2)
will exclude (x∗, y∗) while not excluding any saddle point. By repeatedly adding
new constraints to problem (2.2), we will finally find a saddle point or certify the
nonexistence of saddle points. It results in the following Algorithm 2.1.

Algorithm 2.1 ([3]). Let X,Y be two semialgebraic sets and F, φx, ψx, φy, ψy be
polynomials as in problem (2.2). Let K1 = K2 = Sa := ∅.
Step 1: If (2.2) is infeasible, then F does not have a saddle point over X × Y and

stop; otherwise, solve (2.2) for a set K0 of minimizers. Let k := 0.
Step 2: For each (x∗, y∗) ∈ Kk, do the following:

(a): Solve minx∈X F (x, y∗) to get a set of minimizers S1(y∗) with minimum
value ϑ1(y∗). If F (x∗, y∗) > ϑ1(y∗), update K1 := K1 ∪ S1(y∗).

(b): Solve maxy∈Y F (x∗, y) to get a set of maximizers S2(x∗) with maxi-
mum value ϑ2(x∗). If F (x∗, y∗) < ϑ2(x∗), update K2 := K2 ∪S2(x∗).

(c): If ϑ(y∗) = F (x∗, y∗) = ϑ(x∗), update Sa := Sa ∪ {(x∗, y∗)}.
Step 3: If Sa 6= ∅, then each point in Sa is a saddle point and stop; otherwise go to

Step 4.
Step 4: Solve the minimization problem (2.3)

(2.3)

minx∈X,y∈Y F (x, y)
s.t. φ(x, y) = 0, ψ(x, y) ≥ 0

F (u, y)− F (x, y) ≥ 0 (∀u ∈ K1),
F (x, v)− F (x, y) ≤ 0 (∀ v ∈ K2).

If (2.3) is infeasible, then F has no saddle point and stop; otherwise, com-
pute a set Kk+1 of optimizers for (2.3). Let k := k + 1 and go to Step 2.

All optimization problems in Algorithm 2.1 can be solved by semidefinite relax-
ations. The convergence of Algorithm 2.1 is shown as follows.

Theorem 2.2 ([3]). For generic polynomial F and semialgebraic sets X,Y , Algo-
rithm 2.1 must terminate after finitely many iterations. Moreover, if Sa 6= ∅, then
each (x∗, y∗) ∈ Sa is a saddle point. If Sa = ∅, then there is no saddle point.

In conclusion, this work basically solved the saddle point problem of polyno-
mials. We constructed Algorithm 2.1 for computing saddle points. For almost all
polynomial saddle point problems, our algorithm can either compute a saddle point
or detect the nonexistence of saddle points. This is the first efficient numerical al-
gorithm that can solve general saddle point problems of polynomials. This work is
under minor revision of Foundations of Computational Mathematics.
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3. Hermitian Tensor Decompositions

Hermitian tensors are natural extension of Hermitian matrices to higher order,
but their properties are very different. Every quantum mixed stated can be ex-
pressed by Hermitian tensors, so Hermitian tensors have important applications in
quantum physics. Hermitian tensor decompositions, real Hermitian tensors, flat-
tenings, positivity, and separability are studied in the work.

A tensor H = (Hi1...imj1...jm) ∈ Cn1×···×nm×n1×···×nm is said to be Hermitian if

Hi1...imj1...jm = Hj1...jmi1...im for all i1, ..., im and j1, ..., jm in the range, where ā is

the conjugate of a. The set of all such Hermitian tensors is denoted as C[n1,...,nm].
A rank-1 Hermitian tensor in C[n1,...,nm] must be in the form

(3.1) [v1, v2, · · · , vm]⊗h := v1 ⊗ v2 · · · ⊗ vm ⊗ v1 ⊗ v2 · · · ⊗ vm.

Every Hermitian tensor is a real linear combination of rank-1 Hermitian tensors,
i.e. H =

∑r
i=1 λi[u

1
i , . . . , u

i
m]⊗h for some real scalars λi and complex vectors uji .

The smallest such r is called the Hermitian rank of H, denoted by hrank(H). The
corresponding decomposition is called a Hermitian rank decomposition.

Hermitian tensors form a vector space over the real field. It is natural to consider
the canonical basis of the vector space. For c ∈ C and tuples I := (i1, . . . , im), J :=
(j1, . . . , jm), denote by EIJ(c) the Hermtian tensor in C[n1,...,nm] such that(

EIJ(c)
)
i1···imj1···jm

=
(
EJI(c)

)
j1···jmi1···im

= c

and all other entries are zeros. When c = 1,
√
−1, these tensors form the canonical

basis. Hermitian ranks of all basis tensors and their Hermitian rank decompositions
are determined in our work. For cleanness of the statement, explicit decompositions
are omitted. Hermitian ranks of basis tensors are given as follows.

Theorem 3.1 ([4]). Assume n1, . . . , nm ≥ 2, I = (i1, . . . , im), J = (j1, . . . , jm),
and c 6= 0. If I = J , then hrank EIJ(c) = 1; if I 6= J , then hrank EIJ(c) = 2d where
d is the number of nonzero entries of I − J .

An explicit decomposition is give in the following example.

Example 3.2. For I = (1, 2), J = (3, 4) and c 6= 0, the basis tensor E(12)(34)(c) ∈
C[4,4] has the Hermitian rank 4, with the following Hermitian rank decomposition
(in the following i :=

√
−1)

1

4


c01

0

 ,

0
1
0
1




⊗h

+
1

4


 c

0
−1
0

 ,

 0
1
0
−1




⊗h

−
1

4


c0i

0

 ,

0
1
0
i




⊗h

−
1

4


 c

0
−i
0

 ,

 0
1
0
−i




⊗h

.

Real Hermitian tensors are Hermitian tensors that all entries are real. The
subspace of real Hermitian tensors in C[n1,...,nm] is denoted by

R[n1,...,nm] := C[n1,...,nm] ∩ Rn1×···×nm×n1×···×nm .

For real Hermitian tensors, we are interested in their real decompositions. H ∈
R[n1,...,nm] is called R-Hermitian decomposable if H =

∑r
i=1λi[u

1
i , . . . , u

m
i ]⊗h for

real vectors uji ∈ Rnj and real scalars λi ∈ R. Not every real Hermitian tensor
is R-Hermitian decomposable which is very different from the complex case. We
characterize when a tensor is R-Hermitian decomposable in the following theorem.
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Theorem 3.3 ([4]). A ∈ R[n1,...,nm] is R-Hermitian decomposable if and only if

(3.2) Ai1...imj1...jm = Ak1...kml1...lm

for all labels such that {is, js} = {ks, ls}, s = 1, . . . ,m.

Matrix flattening is a significant tool while studying tensors. Hermitian flatten-
ing and Kronecker flattening are two special flattenings for Hermitian tensors. For
the Hermitian tensor H with the decomposition H :=

∑r
i=1 λi[u

1
i , . . . , u

m
i ]⊗h, its

Hermitian flattening matrix is

m(H) =
∑r

i=1
λi (u1i � · · ·� umi )(u1i � · · ·� umi )∗.

where � is the Kronecker product and a∗ is the conjugate transpose of a. The
canonical Kronecker flattening of H is

κ(H) :=

r∑
i=1

(u1i � u1i � · · ·� um−1i � um−1i )(umi � umi )T

rank(m(H)) and rank(κ(H)) are both lower bounds for hrank(H). However, the
bounds can be very different.

Example 3.4. For m = 2 and n > 1, consider the Hermitian tensor in R[n,n]

H =
∑n

i,j=1
ei ⊗ ei ⊗ ej ⊗ ej =

(∑n

i=1
ei ⊗ ei

)
⊗
(∑n

i=1
ei ⊗ ei

)
.

Then hrank(H) ≥ rankκ(H) = n2 while rank m(H) = 1 .

A Hermitian tensor H ∈ H[n1,...,nm] can be uniquely determined by the con-
jugate multi-quadratic polynomial H(x, x) := 〈H, [x1, . . . , xm]⊗h

〉, in the tuple
x := (x1, . . . , xm) of complex vector variables xi ∈ Cni .

Let F = C or R. H ∈ F[n1,...,nm] is called F-positive semidefinite (F-psd) if

H(x, x) ≥ 0,∀xi ∈ Fni . Denote the cone of F-psd Hermitian tensors by P
[n1,...,nm]
F .

Separable Hermitian tensors are closely related to psd Hermitian tensors. H ∈
F[n1,...,nm] is called F-separableif H has the decomposition H =

∑r
i=1[u1i , . . . , u

m
i ]⊗h

for some uji ∈ Fnj . Denote the cone of F-separable Hermitian tensors by S
[n1,...,nm]
F .

The following theorem characterizes properties of S
[n1,...,nm]
F ,P

[n1,...,nm]
F and

their duality relationship.

Theorem 3.5 ([4]). P
[n1,...,nm]
C and S

[n1,...,nm]
C are proper cones, i.e. they are

closed, convex, solid, and pointed. P
[n1,...,nm]
R and S

[n1,...,nm]
R are closed and con-

vex. However, P
[n1,...,nm]
R is solid but not pointed; S

[n1,...,nm]
R is pointed but not

solid. Moreover, S
[n1,...,nm]
F and P

[n1,...,nm]
F are dual to each other for F = R,C.

In the above, we talked about basis Hermitian tensors, real Hermitian tensors,
flattenings, psd Hermitian tensors and separability. Besides these topics, this work
also discussed Hermitian eigenvalues, Hermitian/conjugate sum of squares, hierar-
chy of SOS representations, reformulation of separability, and e.t.c.. The work has
been published on SIAM Journal on Matrix Analysis and Applications.
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4. Learning Diagonal Gaussian Mixture Models and Incomplete
Tensor Decomposition

A Gaussian mixture model is a mixture of several Gaussian distributions. Learn-
ing Gaussian mixture models has applications across numerous fields, including
speech recognition, economics, social science, and biology. In this work, we pro-
posed a novel algorithm to learn diagonal Gaussian models from its moment tensors.

Consider a diagonal Gaussian mixture model with k components. For i ∈ [k],

let ωi be the proportion of each component i (ωi > 0 and
∑k
i=1 ωi = 1) and each

component distribution is a normal distribution N (µi,Σi), where µi ∈ Rd is the
mean vector and Σi = diag(σ2

i1, . . . , σ
2
id) ∈ Rd×d is the diagonal covariance matrix.

Given samples drawn from the Gaussian mixture model, we aim to estimate the
unknown parameters {(ωi, µi,Σi) : i ∈ [k]} of the Gaussian mixture model.

We first show the moment structure hidden in model.

Theorem 4.1. Let M3 := E(x⊗x⊗x) be the third order moment tensor where x is
the random variable of dimension d for the Gaussian mixture model with parameters
{(ωi, µi,Σi) : i ∈ [k]}. Then

M3 =

k∑
i=1

ωiµi ⊗ µi ⊗ µi +

d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj)

where aj :=
∑k
i=1 ωiσ

2
ijµi for j = 1, · · · , d.

Note that the part
∑d
j=1(aj⊗ej⊗ej+ej⊗aj⊗ej+ej⊗ej⊗aj) only contains indices

(i1, i2, i3) such that at least two of them are equal. Let F :=
∑k
i=1 ωkµi⊗µi⊗µi. It

holds that Ti1i2i3 = (M3)i1i2i3 whenever i1, i2, i3 are distinct. M3 can be estimated
by samples of the Gaussian mixture model, so part of entries of F are known.
From these known entries of F , we developed a brand new algorithm to recover the
decomposition of F by using generating polynomial. Since the decomposition of F
is unique when k is small, the recovered decomposition can be used to find weights
ωi and mean vectors µi. Finally

d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj) = M3 − T

is known. The above equation is a linear system of covariances σ2
ij . Therefore

covariance matrices Σ1, . . . ,Σk are obtained by solving the above linear equations.
In practice, M3 is never known exactly, but it can be estimated from samples.

When the estimation of M3 is sufficiently close to the ground truth, our algorithm
can get good estimations of parameters. The following theorem characterizes the
estimation quality.

Theorem 4.2. Consider the d-dimensional diagonal Gaussian mixture model with

parameters {(ωi, µi,Σi) : i ∈ [r]} where r ≤ d
2−1. Let M̂1 and M̂3 be the estimations

of M1 := E(x) and M3 := E(x ⊗ x ⊗ x) respectively. {(ωopti , µopti ,Σopti ) : i ∈ [r]}
are estimations of parameters obtained from our algorithm with input M̂1, M̂3. If

ε := max(‖M3 − M̂3‖, ‖M1 − M̂1‖) is small enough, then

‖µi − µopti ‖ = O(ε), ‖ωi − ωopti ‖ = O(ε), ‖Σi − Σopti ‖ = O(ε).
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In conclusion, we proposed a new algorithm to learn Gaussian mixture models
based on its moment tensors. First, we find the decomposition of a symmetric in-
complete tensor generated from the third order moment. Then the decomposition is
used to recover all unknown parameters of the Gaussian mixture model. Numerical
experiments on both synthetic and real-world datasets demonstrate the outstanding
performance of our algorithm compared to the traditional EM algorithm.

5. Separability of Hermitian Tensors and PSD Decompositions

As mentioned in section 3, detecting separability of Hermitian tensors is of great
importance in quantum physics. In this work, we reformulated the problem as a
truncated moment problem which can be solved by semidefinite programming. For
separable Hermitian tensors with low C-psd rank, the separability can be detected
by using tensor decomposition.

Recall that every separable Hermitian tensor must be in the form of H =∑r
i=1[u1i , . . . , u

m
i ]⊗h. Let xi = xrei +

√
−1ximi , then [x1, . . . , xm]⊗h = R(x̃) +√

−1I(x̃) where R(x̃), I(x̃) are polynomials in x̃ := (xre1 , x
im
1 , . . . , xrem , x

im
m ). H

can be rewritten as

(5.1) H =

∫
R(x̃) +

√
−1I(x̃)dµ

where µ :=
∑r
i=1 δ(Re(u1

i ),Im(u1
i ),...,Re(um

i ),Im(um
i )) is a sum of Dirac measure and

Re(a), Im(a) denote the real part and imaginary part of a respectively. Thus we
get the following result.

Proposition 5.1. The Hermitian tensor H is separable if and only if there exists
a measure µ supported on S := {x̃ = (xre1 , x

im
1 , . . . , xrem , x

im
m )| ‖xrej ‖2 + ‖ximj ‖2 =

1, xrej , x
im
j ∈ Rnj} such that equation (5.1) holds.

The above proposition reformulates detecting separability as a truncated moment
problem. Let F (x̃) be a random sum of squares polynomial. Consider the truncated
moment problem

(5.2)

minµ
∫
F (x̃)dµ

s.t. Re(H) =
∫
R(x̃)dµ

Im(H) =
∫
I(x̃)dµ

µ is a measure supported on S

H is separable if and only if the above problem is feasible. The above problem can
be solved by standard semidefinite relaxations. See our work [1] for more details.
The convergence results are shown as follows.

Theorem 5.2. Let H be a Hermitian tensor, then the following holds.

(i) If H is separable, then under some assumptions, the kth order relaxation
of (5.2) will give a measure that solves (5.2) for some k big enough.

(ii) If H is not separable, then the kth order relaxation of (5.2) must be infeasible
for some k big enough.

We also proposed a new faster approach based on tensor decomposition since
the previous method can be very slow for big H.
H is separable if and only if there exist psd matrices Bij such that m(H) =∑s
i=1Bi1 � · · · � Bim. The smallest such s is called C-psd rank of H, denoted
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by hrankpsd(H). Directly finding the C-psd rank is usually very hard. Suppose
H =

∑r
i=1 λi[u

1
i , . . . , u

m
i ]⊗h, define its associated non-symmetric tensor

T(H) :=

r∑
i=1

λiv(u1i (u
1
i )
∗)⊗ · · · ⊗ v(umi (umi )∗)

where v(A) is the vectorization of matrix A. Decomposing T(H) can certify the
separability of H and determine its C-psd rank in some cases. If T(H) has rank s
with the decomposition

(5.3) T(H) =
∑s

i=1
v(Bi1)⊗ · · · ⊗ v(Bim),

with Bij being a psd Hermitian matrix, then H is separable and hrankpsd(H) = s.
We further proved that when hrankpsd(H) is small, then T(H) will have the

decomposition in the form of (5.3). In such case, separability can be verified by
decomposing T(H). Decompositions of nonsymmetric tensors can be found by some
implemented algorithms. It is usually much faster than the previous truncated
moment approach and can handle bigger Hermitian tensors.

6. Future Work

In the future, I will certainly continue my work on optimization and tensor
computation. Here is a brief plan for the future work.

• Polynomial and convex optimization has broad applications in various fields,
including game theory, decision making, control theory, tensor computa-
tion. A big part of my future plan is to explore more techniques in polyno-
mial optimization and apply them to solve related problems.

• Tensor computation has gained more and more interest because of its power
in machine learning and data science. However, there are still lots of un-
solved problems in this relatively new research area. In the future, I will
continue to conduct research on tensor problems, like tensor decomposition,
tensor completion, tensor eigenvalues, and so on.

• Tensors have broad applications in real-world and data science, including
tensor regression, tensor PCA, tensor neural network, e.t.c. Work on these
applications is also part of my future research.
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